OXAZOLINES AS ACTIVATING GROUPS IN AROMATIC SUBSTITUTION. REGIOSELECTIVE METALLATION OF THE 3-POSITION IN PYRIDINE.

A. I. Meyers* and Richard A. Gabel
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
(Received in USA 17 October 1977; received in UK for publication 21 November 1977)

The direct metallation of pyridine, except in a few special cases, 2 is unknown mainly because organolithium reagents readily add across the C=N bond. 3 On the other hand, lithiated pyridines have been obtained by halogen metal

exchange via the bromopyridines 4 (Scheme 1). In the course of a study designed to utilize the extraordinary activating effect of oxazolines toward orthometallation (1) 2 , 5 and ortho-substitution 1 (2) of aromatics, it was felt that

direct metallation of pyridines would be feasible. Thus, isonicotinic acid was transformed into the oxazoline $\underline{3}$ (80%, mp 51-52°) and subjected to various organolithium reagents. Use of \underline{n} -butyllithium, \underline{sec} -butyllithium, \underline{tert} -butyllithium and

$$CO_2H$$
 H_2N
 Me
 $SOC1_2$
 $MeLi$
 $-78^\circ \rightarrow 0^\circ$
 4
 $-78^\circ \rightarrow 0^\circ$
 6
 (76%)
 $MeLi$
 $-78^\circ \rightarrow 0^\circ$
 4
 $-78^\circ \rightarrow 0^\circ$
 6
 (76%)

lithium diisopropyl amide gave mixtures of the 3-lithiopyridine $\underline{4}$ and addition to the pyridine ring as shown in Scheme 1. However, methyllithium, when added to a THF solution of the pyridyl oxazoline $\underline{3}$ at -78° (1 hr) and warmed to 0° (1 hr) gave on addition of diethyl ketone (-78°) essentially a quantitative yield of $\underline{5}$. Analytically pure material was recovered in 76% yield thus indicating the high efficiency of this process. No trace of addition product or lithiation at the 2-position was discernible from the nmr spectrum of the crude reaction product. Acid hydrolysis (4.5 N HCl, reflux) converted $\underline{5}$ to the lactone $\underline{6}$ (76%, mp 62°). The generality of the regiometallation and subsequent reaction with various electrophiles are presented in Table 1.

ОХ

Table 1. Metallation of 2-(4-pyridyl)-4,4-dimethyl-2-oxazoline, 3

ОХ

$0x = \sqrt{0}$	MeL i	Li —	Ē.	
E	Produc t ^a	% Yield ^b	Rxn. Time	Bp (mp)°
D ₂ 0	ON D	80	0.5 hr	(51-52)
EtI	OX OX	56	4.5 hr	65 (0.1 torr)
MeI	OX OX	63	2 hr	80 (0.05 torr)
∕~Br	OX OX	55	2 hr	88 (0.1 torr)
РҺСНО	OX OH Ph	83	4 hr	125 (0.05 torr)
Et ₂ C=0	OX OH	76	5 hr	(84.5-85.0)
0 HCNMe ₂	ОХ	52	2 hr	С

OX

a) All products gave satisfactory spectral and elementary analyses.

b) All yields represent isolated, pure material. Crude yields are 20-25% higher.

c) Unstable compound, decomposes in air.

A recent report 6 described a similar effect on the metallation of thiophenes in the presence of an oxazoline which directed metallation predominantly to the 3-position. The extent of metallation reached 91% at the 3-position while only 4%

at the usually more reactive 2-position. This behavior in the thiophene series coupled with results described herein for pyridine seem to support the fact that the oxazoline moiety ranks among the most efficient of the so-called activating groups for ortho-metallation. In fact, the coordination ability of the oxazoline is sufficiently strong to compete successfully with the well-known addition of organolithium reagents to the pyridine nucleus.

<u>ACKNOWLEDGEMENT</u> The authors wish to express their gratitude to the Army Research Office (Durham) for financial support.

REFERENCES

- For previous papers in this series c.f. A. I. Meyers and E. D. Mihelich, <u>J. Org. Chem.</u>, <u>40</u>, 3158 (1975); A. I. Meyers and E. D. Mihelich, <u>J. Am. Chem. Soc.</u>, <u>97</u>, 7383 (1975); A. I. Meyers and R. Gabel, <u>J. Org. Chem.</u>, <u>42</u>, 2653 (1977).
- 2. J. D. Cook and B. Wakefield, <u>J. Chem. Soc. (C)</u>, 1973 (1969) have reported metallation of the 4-position in 2,3,5,6-tetrachloropyridine and 2,3,6-trichloropyridine.
- B. J. Wakefield, "The Chemistry of Organolithium Compounds", Pergamon Press, 1974, pp 112-116.
- H. Gilman and S. M. Spatz, <u>J. Org. Chem.</u>, <u>16</u>, 1485 (1951); J. P. Wibaut <u>et. al</u>, <u>Rec. Trav. Chim.</u>, <u>70</u>, 1054 (1951); A. Murray, <u>et. al</u>, <u>J. Am. Chem. Soc.</u>, <u>70</u>, 1037 (1948); W. E. Parham and R. M. Piccirilli, <u>J. Org. Chem.</u>, <u>42</u>, 257 (1977).
- 5. A similar observation was reported by H. W. Geschwend and A. Hamdam, $\underline{J.~Org.}$ Chem., $\underline{40}$, 2008 (1975).
- 6. L. Della Vecchia and I. Vlattas, <u>J. Org. Chem.</u>, <u>42</u>, 2649 (1977).
- D. W. Slocum and D. I. Sugarman, <u>Adv. Chem. Ser.</u>, <u>No. 130</u>, 222 (1974);
 D. W. Slocum and C. A. Jennings, <u>J. Org. Chem.</u>, <u>41</u>, 3653 (1976).